

Welcome to npsolve’s documentation!

The npsolve package lets you use object-oriented classes and
methods for calculations with numerical solvers.

Instead of defining equations, you can write methods with any combination of
logic and equations. It decouples the calculations from the machinery to
numerically iterate with them, giving you all the benefits you’d expect
from objects.

Many numerical solvers (like those in scipy) provide candidate solutions as
a numpy ndarray. They often also require a numpy ndarray as a return value
(e.g. an array of derivatives) during the solution. These requirements can make
it difficult to use an object oriented approach to performing the calculations.
Usually, we end up with script-like code that looses many of the benefits
of object-oriented programming.

The npsolve framework links a solver with multiple classes that handle the
calculations for each step in the algorithm. It allows different parts of
the calculations to be encapsulated and polymorphic, and makes the code
much easier to modify and maintain.

Contents:

	Tutorials
	Tutorial 1 - Basics

	Tutorial 2 - Handling discontinuities

	Tutorial 3 - Timeseries input

	Tutorial 4 - Sharing values between objects

	Tutorial 5 - Using polymorphism

	Tutorial 6 - Logging variables and stopping

	Package documentation
	npsolve package

	npsolve.core module

	npsolve.cache module

	npsolve.soft_functions module

	npsolve.solvers module

	npsolve.utils module

	Related packages

Indices and tables

	Index

	Module Index

	Search Page

Tutorials

The fastest way to learn npsolve is to work through some simple examples.
These short tutorials walk through some simple examples, to help learn how to
use npsolve.

	Tutorial 1 - Basics

	Tutorial 2 - Handling discontinuities

	Tutorial 3 - Timeseries input

	Tutorial 4 - Sharing values between objects

	Tutorial 5 - Using polymorphism

	Tutorial 6 - Logging variables and stopping

Tutorial 1 - Basics

Let’s use npsolve to do some integration through time, like you would to
solve an ODE. Instead of equations, though, we’re using class methods.

First, setup some classes that you want to do calculations with. We do this by
using the add_var() method to setup variables and
their initial values.

import numpy as np
import npsolve

class Component1(npsolve.Partial):
 def __init__(self):
 super().__init__() # Don't forget to call this!
 self.add_var('position', init=0.1)
 self.add_var('velocity', init=0.3)

class Component2(npsolve.Partial):
 def __init__(self):
 super().__init__() # Don't forget to call this!
 self.add_var('force', init=-0.1)

All the variables are made available to all Partial instances automatically
through their state attribute. It’s a dictionary. The add_var method
sets initial values into the instance’s state dictionary. Later, the Solver
will ultimately replace the state attribute with a new dictionary that
contains all variables from all the Partial classes.

Next, we’ll tell these classes how to do some calculations during each time
step. The step method is called automatically and expects a dictionary of
return values (e.g. derivatives). We’ll use that one here. The state
dictionary is given again as the first argument, but we’re going to use the
internal state attribute instead. So, we’ll add some more methods:

class Component1(npsolve.Partial):
 def __init__(self):
 super().__init__() # Don't forget to call this!
 self.add_var('position', init=0.1)
 self.add_var('velocity', init=0.3)

 def step(self, state_dct, t, *args):
 """ Called by the solver at each time step

 Calculate acceleration based on the net force.
 """
 acceleration = 1.0 * self.state['force']
 derivatives = {'position': self.state['velocity'],
 'velocity': acceleration}
 return derivatives

class Component2(npsolve.Partial):
 def __init__(self):
 super().__init__() # Don't forget to call this!
 self.add_var('force', init=-0.1)

 def calculate(self, t):
 ''' Some arbitrary calculations based on current time t
 and the position at that time calculated in Component1.
 This returns a derivative for variable 'c'
 '''
 dc = 1.0 * np.cos(2*t) * self.state['position']
 derivatives = {'force': dc}
 return derivatives

 def step(self, state_dct, t, *args):
 ''' Called by the solver at each time step '''
 return self.calculate(t)

Now, we’ll set up the solver. For this example, we’ll use the odeint solver
from Scipy. Here’s what it looks like:

class Solver(npsolve.Solver):
 def solve(self, t_end=10):
 self.npsolve_init() # Initialise
 self.t_vec = np.linspace(0, t_end, 1001)
 result = odeint(self.step, self.npsolve_initial_values, self.t_vec)
 return result

Let’s look at what’s going on in the solve method. By default, Solvers
have a step method that’s ready to use. (They also have a one_way_step
method that doesn’t expect return values from the Partials, and a tstep
method that expects a time value as the first argument.) After initialisation,
the initial values set by the Partial classes are captured in the
npsolve_initial_values attribute. By default, the Solver’s step method
returns a vector of all the return values, the same size as the Solver’s
npsolve_initial_values array. So most of the work is done for us here
already.

Note here that we don’t need to know anything about the model or
the elements in the model. This allows us to decouple the model and Partials
from the solver. We can pass in different models, or pass models to different
solvers. We can make models with different components. It’s flexible and easy
to maintain!

To run, we just have to instantiate the Solver and Partial instances,
then pass a list or dictionary of the Partial instances to the
connect() method of the Solver. They’ll link up
automatically through fastwire.

def run():
 solver = Solver()
 partials = [Component1(), Component2()]
 solver.connect(partials)
 res = solver.solve()
 return res, solver

Let’s set up a plot to see the results. Use the npsolve_slices attribute
of the Solver to get us the right columns.

import matplotlib.pyplot as plt

def plot(res, s):
 slices = s.npsolve_slices

 plt.plot(s.t_vec, res[:,slices['position']], label='position')
 plt.plot(s.t_vec, res[:,slices['velocity']], label='velocity')
 plt.plot(s.t_vec, res[:,slices['force']], label='force')
 plt.legend()

Now let’s run it!

res, s = run()
plot(res, s)

[image: _images/tutorial_1.png]

Tutorial 2 - Handling discontinuities

Often, real-world integration problems in engineering have discontinuities.
That means that the physics cannot be described adequately by a single set
of equations.

Fortunately, npsolve provides a soft_functions module to make it easy to
handle discontinuities, by preventing them entirely. These functions work
by providing a differential that changes smoothly over a very, very small time,
distance, or whatever value it’s applied to. Variable time step solvers, such
many in in scipy.integrate, handle these very small but smooth transitions
easily. The approximation of these functions inevitably introduces small
errors, but for many real-world problems these errors are negligible. It’s far
more important to get a 99.999% accurate result than none at all.

We’ll illustrate the use of two soft_functions to model a bouncing ball. It’s
going to start rolling along a ledge, before falling off onto a surface that
it bounces on. Let’s start with some setup:

import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt

import npsolve
from npsolve.soft_functions import negdiff, below

G = -9.80665
Y_SURFACE = 1.5
X_LEDGE = 2.0
Y_LEDGE = 5.0

Now we’ll start writing our Ball class. We’ll give it some mass, an initial
x-velocity, and some parameters to control how it bounces. We’ll create the
bouncing by a combination of spring-like behaviour and velocity-dependent
damping. Here’s the constructor:

class Ball(npsolve.Partial):
 def __init__(self, mass=1.0,
 k_bounce=1e7,
 c_bounce=3e3,
 initial_vel=5.0):
 super().__init__() # Don't forget to call this!
 self.mass = mass
 self.k_bounce = k_bounce
 self.c_bounce = c_bounce
 self.add_var('position', init=np.array([0.0, Y_LEDGE]))
 self.add_var('velocity', init=np.array([initial_vel, 0.0]))

Notice here that the position and velocity variables are 1D numpy
ndarrays of size 2, to reflect x and y axes. npsolve handles variables of
1D arrays!

Let’s create a method in the Ball class to calculate the force of gravity on
the ball.

class Ball():
 # ...

 def F_gravity(self):
 """ Force of gravity """
 return np.array([0, self.mass * G])

Pretty simple so far. Now let’s make our ledge react the force of gravity
until the ball reaches the edge of the ledge with another method:

class Ball():
 # ...

 def F_ledge(self):
 x_pos = self.state['position'][0]
 return -self.F_gravity() * below(x_pos, limit=X_LEDGE)

Here, we’re using the below soft function. It’s 1 below a limit
(here X_LEDGE) and 0 above it, with a very small but smooth transition around
the limit. So, this force will only apply until the ball reaches the edge of
the ledge. We do this so the differentials are continuously smooth, so the
scipy integrator won’t have any trouble with discontinuities.

Now, let’s make the method to generate a bouncing force when it hits the
surface. This one is a bit more complex:

class Ball():
 # ...

 def F_bounce(self):
 """ Force bouncing on the surface """
 y_pos = self.state['position'][1]
 y_vel = self.state['velocity'][1]
 F_spring = -self.k_bounce * negdiff(y_pos, limit=Y_SURFACE)
 c_damping = -self.c_bounce * below(y_pos, Y_SURFACE)
 F_damping = c_damping * negdiff(y_vel, limit=0)
 return np.array([0, F_spring + F_damping])

We’re using the negdiff soft function here. It gives the difference between
a value and some limit when the value is below the limit and 0 when it’s above.
Again, it’s a smooth function with a very small transition region around the
limit. We apply that to the spring force so it only provides that force
when the ball is (slightly) below the surface.

For the damping, we’ve used the below function to set up a damping
coefficient, c_damping, that will only apply when the ball is (slightly)
below the surface. We also want the damping force to only push the ball - we
don’t want it to ‘pull’ the ball like a sticky surface might. So, we’ve used
the negdiff function on the velocity. When the velocity is positive,
the negdiff function goes to 0 so the damping force will be 0 too. We add
the two forces to return a bounce force.

Now we can set up the step method that gets called by the integrator.

class Ball():
 # ...

 def step(self, state_dct, t, *args):
 """ Called by the solver at each time step """
 F_net = self.F_gravity() + self.F_ledge() + self.F_bounce()
 acceleration = F_net / self.mass
 derivatives = {'position': self.state['velocity'],
 'velocity': acceleration}
 return derivatives

This just sums the forces, calculates the acceleration by applying elementary
physics, then returns the acceleration.

Now let’s set up the Solver:

class Solver(npsolve.Solver):
 def solve(self, t_end=3.0, n=100001):
 self.npsolve_init() # Initialise
 t_vec = np.linspace(0, t_end, n)
 solution = odeint(self.step, self.npsolve_initial_values, t_vec)
 dct = self.as_dct(solution)
 dct['time'] = t_vec
 return dct

This is very much like the solver in the quickstart example. Here though,
we’re using the as_dct method to convert the outputs to a dictionary, in
which each key is variable name, and each value is an array of the values
through time.

Let’s set up a function to run it and plot the results.

def run(partials, t_end=3.0, n=100001):
 solver = Solver()
 solver.connect(partials)
 return solver.solve(t_end=t_end, n=n)

def plot(dct):
 plt.plot(dct['position'][:,0], dct['position'][:,1], label='position')
 plt.axhline(Y_SURFACE, c='r')
 plt.plot([0, X_LEDGE], [Y_LEDGE, Y_LEDGE], 'r:')
 plt.ylim(0, 6)
 plt.xlabel('x')
 plt.ylabel('y')

Here, we’re making the run method a bit more generic. It’s going to take
a list of Partial instances, connect them to the solver, call the solve
method, then return the result and the partials.
Now we can run it!

ball = Ball()
dct = run(ball)
plot(dct)

We’ve made a bouncing ball!

[image: _images/tutorial_2a.png]
If we zoom way in on the bounce, you can see it’s actually smooth.

[image: _images/tutorial_2b.png]

Tutorial 3 - Timeseries input

We might have inputs we want to use that aren’t functions. They might be
measured timeseries data, for example, such as position over time. Or, they
could be hypothetical data. For this tutorial, we’re just use some random
numbers to make a particle move about.

First, the setup:

import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt

import npsolve
from npsolve.utils import Timeseries

from tutorial_2 import run

Notice, we’re going to reuse the Solver and run function we set up in
Tutorial 2, but for a completely different model.

Now let’s start to write a Particle class:

class Particle(npsolve.Partial):
 def __init__(self):
 super().__init__() # Don't forget to call this!
 self.time_points = np.linspace(0, 1, 51)
 np.random.seed(0)
 self.positions = np.random.rand(51, 2) * 10
 self.xts = Timeseries(self.time_points, self.positions[:,0])
 self.yts = Timeseries(self.time_points, self.positions[:,1])
 self.add_var('position', init=self.positions[0,:])

We’re creating some timeseries data in the time_points and positions
attributes. Then, for each x or y axis, we’re creating a Timeseries object.
We pass in the x values (the time points) and the values at those times
(positions). The Timeseries class takes care of the rest, and will smoothly
intepolate between those points using a spline. Notice also that
we’re setting the initial values of the position variable to the
first pair of (x,y) values in the positions array.

Now, let’s write the step method.

class Particle(npsolve.Partial):
 # ...

 def step(self, state_dct, t, *args):
 ''' Called by the solver at each time step
 Calculate acceleration based on the
 '''
 velocity = np.array([self.xts(t, der=1), self.yts(t, der=1)])
 derivatives = {'position': velocity}
 return derivatives

We’re getting the velocity in each axis by simply calling the Timeseries
instances we set up in the constructor. We pass them in the current x value
(in this case the time), and the derivative we want (der). In this case,
we want the first derivative of the position, which is time.

We can reuse our run method and Solver from Tutorial 2. We’ll set up some
plot functions though:

def plot(dct, particle):
 plt.plot(dct['position'][:,0], dct['position'][:,1], linewidth=0.5)
 plt.scatter(particle.positions[:,0], particle.positions[:,1], c='r',
 marker='.')
 plt.xlabel('x')
 plt.ylabel('y')

def plot_vs_time(dct, particle):
 fig, axes = plt.subplots(2, 1, sharex=True)
 axes[0].plot(dct['time'], dct['position'][:,0], linewidth=0.5)
 axes[0].scatter(particle.time_points, particle.positions[:,0], c='r',
 marker='.')
 axes[0].set_xlabel('time')
 axes[0].set_ylabel('x')
 axes[1].plot(dct['time'], dct['position'][:,1], linewidth=0.5)
 axes[1].scatter(particle.time_points, particle.positions[:,1], c='r',
 marker='.')
 axes[1].set_xlabel('time')
 axes[1].set_ylabel('y')

Now everything’s set. Let’s run it!

particle = Particle()
dct = run([particle], t_end=1.0)
plot(dct, particle)
plot_vs_time(dct, particle)

Here’s how our particle has moved…

[image: _images/tutorial_3a.png]
And we can see how the Timeseries instances have controlled the velocity,
and hence position, over time.

[image: _images/tutorial_3b.png]
In real-world models, you’ll probably want to use the Timeseries classes
together with other model equations and logic.

	Tip:

	You can make a subclass of a Partial instance and overwrite the step
method, so that the derivatives are set by Timeseries classes. Then, you
can easily switch between the original Partial instance and one in which
one or more derivatives are set by timeseries data!

Tutorial 4 - Sharing values between objects

In more complex models, values often need to be shared between different
Partial instances. Sometimes, those values are state variables that are
declared with the add_var method. In that case, any Partial connected to
the Solver will get access to them through their state dictionary
(i.e. self.state[<variable name>]). But some shared values are not state
variables. How do we handle that?

We use the fastwire package. It provides a convenient, event-like way to
share variables. This tutorial will give an example. We’re going to
simulate the dynamics of a frictionless slider moving in the x axis
with a pendulum attached that is free to move in the x and y axes. We’ll add
a sinusoidal force to the slider to excite the system dynamics.

First, a little setup:

import numpy as np
import matplotlib.pyplot as plt
import npsolve
from tutorial_2 import run

G = np.array([0, -9.80665])

Here, we’ve made G a 2D vector to represent gravity.

Now we’ll get a wire box. A wire box is a collection of wires that we’ll use
to pass values. Here’s how we do that:

import fastwire as fw
wire_box = fw.get_wire_box('demo')

You can use wire_box = fw.get_wire_box(‘demo’) in any code module and it’ll
get the same wire box, so you don’t have to import that object into other
modules.

Now let’s start making the Slider.

class Slider(npsolve.Partial, fw.Wired):
 def __init__(self, freq=1.0, mass=1.0):
 super().__init__() # Don't forget to call this!
 self.freq = freq
 self.mass = mass
 self.add_var('s_pos', init=np.zeros(2))
 self.add_var('s_vel', init=np.zeros(2))

Importantly, we’re inheriting the fw.Wired class. That lets us use
fastwire decorators. We’re also making the Slider fully 2D, even though
at this stage we only want it to move in x.

We’re doing to connect the Pendulum to the Slider, and the Pendulum will need
to know where the Slider is so it can pivot about the right point. Here’s
how we make the pivot location and velocity available to the Pendulum:

class Slider(npsolve.Partial, fw.Wired):
 # ...

 @wire_box.supply('pivot')
 def pivot(self, t):
 """ The location of the pivot that connects to the pendulum """
 return self.state['s_pos'], self.state['s_vel']

We decorate the method with @wire_box.supply(‘pivot’) because we’ve
called our wire box wire_box. This tells fastwire that this method
supplies the values referred to by the wire called ‘pivot’. We’ll pass in
the current time, t, although we don’t need it yet.

Let’s set up a method to create the excitation force:

class Slider(npsolve.Partial, fw.Wired):
 # ...

 def F_sinusoid(self, t):
 """ The force to make the system do something """
 return 10 * np.cos(2 * np.pi * (self.freq * t))

Now we can write our step method to return the state derivatives by
doing some basic physics.

class Slider(npsolve.Partial, fw.Wired):
 # ...

 def step(self, state_dct, t, *args):
 """ Called by the solver at each time step """
 F_pivot = -wire_box['F_pivot'].fetch(t)
 F_pivot_x = F_pivot[0]
 F_sinusoid_x = self.F_sinusoid(t)
 F_net_x = F_pivot_x + F_sinusoid_x
 acc = np.array([F_net_x / self.mass, 0])
 derivatives = {'s_pos': state_dct['s_vel'],
 's_vel': acc}
 return derivatives

Notice here we’re going to pull in a force, F_pivot, which is going to be
calculated by the Pendulum class. We just have to use the fetch method
on the right wire, which here we’ve called F_pivot. For this example,
we’ll also pass in the current time ‘t’ to the method that will
supply that force (we haven’t written that method yet). We’re flipping the
sign because the slider will see the reaction force.

Now, let’s make the Pendulum class.

class Pendulum(npsolve.Partial, fw.Wired):
 def __init__(self, mass=1.0, k=1e6, c=1e4, l=1.0):
 super().__init__() # Don't forget to call this!
 self.mass = mass
 self.k = k
 self.c = c
 self.l = l
 self.add_var('p_pos', init=np.array([0, -self.l]))
 self.add_var('p_vel', init=np.array([0, 0]))

Again, we’re inheriting fw.Wired. This class has some stiffness (k) and
damping c parameters, along with mass (mass) and length (l). It needs
to calculate the force that arises because of it’s connection to the Slider.
We’re going to model a very stiff, damped connection between the pivot on the
Slider and the position of the Pendulum.

class Pendulum(npsolve.Partial, fw.Wired):
 # ...

 @wire_box.supply('F_pivot')
 @npsolve.mono_cached()
 def F_pivot(self, t):
 """ Work out the force on the pendulum mass """
 pivot_pos, pivot_vel = wire_box['pivot'].fetch(t)
 rel_pos = pivot_pos - self.state['p_pos']
 rel_vel = pivot_vel - self.state['p_vel']
 dist = np.linalg.norm(rel_pos)
 unit_vec = rel_pos / dist
 F_spring = self.k * (dist - self.l) * unit_vec
 rel_vel_in_line = np.dot(rel_vel, unit_vec)
 F_damping = self.c * rel_vel_in_line * unit_vec
 return F_spring + F_damping

We’re again using the @wire_box decorator so that this method will supply
the F_pivot wire. The return value, the force at the
pivot, will be used by both the Slider (via the F_pivot wire) and the
Pendulum (directly). We can’t assume which object will call the F_pivot
method first, but we don’t want to have it calculate the result twice. (This
is a simple example, but in computationally intensive calculations, reducing
calculations can be important.) So, we use the @npsolve.mono_cached()
decorator here as well. This caches the result for the current timestep.
Subsequent calls simply return that value. The mono_cached() doesn’t care
about the value of arguments. If they might change for the same timestep,
you can use the multi_cached() decorator instead.

Let’s add the force of gravity now:

class Pendulum(npsolve.Partial, fw.Wired):
 # ...

 def F_gravity(self):
 return self.mass * G

Finally, we’ll make the step method, doing some basic physics to
calculate acceleration.

class Pendulum(npsolve.Partial, fw.Wired):
 # ...

 def step(self, state_dct, t, *args):
 ''' Called by the solver at each time step
 Calculate acceleration based on the
 '''
 F_net = self.F_pivot(t) + self.F_gravity()
 acceleration = F_net / self.mass
 derivatives = {'p_pos': state_dct['p_vel'],
 'p_vel': acceleration}
 return derivatives

Before we run, let’s make some plot functions…

def plot_xs(dct):
 plt.plot(dct['time'], dct['s_pos'][:,0], label='slider')
 plt.plot(dct['time'], dct['p_pos'][:,0], label='pendulum')
 plt.xlabel('time')
 plt.ylabel('x')
 plt.legend(loc=3)

def plot_trajectories(dct):
 plt.plot(dct['s_pos'][:,0], dct['s_pos'][:,1], label='slider')
 plt.plot(dct['p_pos'][:,0], dct['p_pos'][:,1], label='pendulum')
 plt.xlabel('x')
 plt.ylabel('y')
 plt.xlim(-1.5, 1.5)
 plt.ylim(-1.2, 1.2)
 plt.gca().set_aspect('equal')
 plt.legend(loc=2)

Finally, we’ll make a little function to run the model and plot the results.

def execute(freq):
 partials = [Slider(freq=freq), Pendulum()]
 dct = run(partials, t_end=10.0, n=10001)
 plot_xs(dct)
 plot_trajectories(dct)

Let’s see what happens at 2 Hz:

execute(2.0)

[image: _images/tutorial_4_2Hz_xs.png]
[image: _images/tutorial_4_2Hz_trajectories.png]
Nothing very interesting. Both objects just oscillate, as you might expect.
Now let’s try at 1 Hz:

execute(1.0)

[image: _images/tutorial_4_1Hz_xs.png]
[image: _images/tutorial_4_1Hz_trajectories.png]
The Pendulum is wobbling around a bit more now. Let’s try at 0.5 Hz:

execute(1.0)

[image: _images/tutorial_4_0p5Hz_xs.png]
When we look a the trajectories, we see what’s really happening…

[image: _images/tutorial_4_0p5Hz_trajectories.png]
Remember that our pendulum isn’t quite a rigid body - we’ve approximated it
as a very stiff, highly damped spring. We should check that the approximation
is good by checking that the distance between the pivot and pendulum is
very very close to 1.0. Let’s plot the distance:

def plot_distance_check(dct):
 diff = dct['p_pos'] - dct['s_pos']
 dist = np.linalg.norm(diff, axis=1)
 plt.plot(dct['time'], dist)
 plt.xlabel('time')
 plt.ylabel('length')

plot_distance_check(dct)

[image: ../../examples/tutorial_4_distance_check.png]
Our maximum length error is only 0.0001, compared to our pendulum length of
1.0, so we know the errors due to that approximation will be small.

Tutorial 5 - Using polymorphism

In Tutorial 4, we made a Pendulum move under a Slider. What if that
pendulum moved under the Particle we made in Tutorial 3 instead? Let’s find
out, to demonstrate how npsolve makes it easy to do so.

We’ll start by importing what we need:

import numpy as np
import matplotlib.pyplot as plt
from tutorial_2 import run as t2_run
from tutorial_3 import Particle
from tutorial_4 import Pendulum
import fastwire as fw
wire_box = fw.get_wire_box('demo')

We need to add a pivot method to the Particle, so we’ll subclass it like
this.

class Particle2(Particle, fw.Wired):

 @wire_box.supply('pivot')
 def pivot(self, t):
 velocity = np.array([self.xts(t, der=1), self.yts(t, der=1)])
 return self.state['position'], velocity

That’s it - now this class will substitute for the old Slider class!
We’re returning the position and velocity in the same format that the
Pendulum expected from the Slider, and we’ve wired it to the same ‘pivot’ wire.

There’s one small glitch - initial conditions. In Tutorial 4, we
conveniently set up the initial conditions right. How do we do that now?
Here’s how:

def set_init_condition(particle, pendulum):
 init_particle_pos = particle.npsolve_vars['position']['init']
 init_pendulum_pos = init_particle_pos - np.array([0.0, 1.0])
 pendulum.set_init('p_pos', init_pendulum_pos)

When a class calls add_var, that information gets added to the npsolve_vars
attribute. We’re taking that, subtracting our pendulum length from the height,
and then calling the set_init method to set the initial position of the
pendulum to that position. Easy.

Now we’ll make a function to run the new model.

def run(k=1e6, c=1e4):
 particle = Particle2()
 pendulum = Pendulum(k=k, c=c)
 set_init_condition(particle, pendulum)
 partials = [particle, pendulum]
 dct = t2_run(partials, t_end=1.0, n=10001)
 return dct

And a new plot function to see the results.

def plot_trajectories(dct):
 plt.plot(dct['position'][:,0], dct['position'][:,1], linewidth=1.0,
 label='particle')
 plt.plot(dct['p_pos'][:,0], dct['p_pos'][:,1], linewidth=1.0,
 label='pendulum')
 plt.xlabel('x')
 plt.ylabel('y')
 plt.xlim(-2.5, 12.5)
 plt.ylim(-2.5, 12.5)
 plt.gca().set_aspect('equal')
 plt.legend(loc=2)

Let’s run it!

dct = run()
plot_trajectories(dct)

[image: _images/tutorial_5_trajectories.png]
Our pendulum is now hurtling around with a particle!

Let’s check the pendulum length again to ensure it’s behaving as expected.

def plot_distance_check(dct):
 diff = dct['p_pos'] - dct['position']
 dist = np.linalg.norm(diff, axis=1)
 plt.plot(dct['time'], dist)
 plt.xlabel('time')
 plt.ylabel('length')

plot_distance_check(dct)

[image: ../../examples/tutorial_5_distance_check.png]
Here, our stiff spring and firm damping aren’t quite enough to handle the
fast accelerations due to the particle motion. So, we’ll tweak our
parameters and run again:

dct = run(k=1e9, c=1e7)
plot_trajectories(dct)
plot_distance_check(dct)

[image: _images/tutorial_5_trajectories_2.png]
Our Pendulum trajectory is different.

[image: ../../examples/tutorial_5_distance_check_2.png]
Now, our distance check looks ok, so we can be more confident with this
result - as crazy as it is!

Think about what this lets us do. We might write classes for a given situation.
Then, say if we run an experiement and get some measured data, we can swap
the relevant Partial for one that uses that Timeseries data. Or, perhaps we
have a new idea to test - we can easily swap out that part of the model and
compare it back to back with the first.

We can validate our classes against unittests, theory, and experimental data.
Then, we can run new models that use them without changing anything within
those classes. This can provide confidence that we haven’t made any mistakes
within those classes in the new model.

Tutorial 6 - Logging variables and stopping

We often want to output non-state values during calculation. We may want to
end the calculation when a condition is met. Fortunately, these are both easy
to do both with npsolve.

npsolve provides a special Integrator class to help you do these. By
default, it uses the LSODA integrator in scipy (if scipy is present).
However, it’s built to use any set of integrators that work like scipy’s
ode. It works by breaking up the time domain into short frames. It uses
the integrator to integrate between each frame as normal. scipy’s integrators
are stateful, so they can continue with the next frame with minimal overhead.

At each frame, the Integrator class sets a special status flag, which can
be anywhere else in the code. When this flag (npsolve.solvers.Final) is set,
it means the state values for that time are the ‘final’ (not guesses by the
variable-time-step solver). Partial classes can then add values to be logged.
The solver also listens to a flag to stop the integration at that point that
can be set from anywhere else in the code.

Here’s an example. Let’s change the step method of the Pendulum class in
Tutorial 4 to add some logging and raise a stop flag. We’ll first do some
imports:

import matplotlib.pyplot as plt
import npsolve
from tutorial_4 import Slider, Pendulum

Now let’s set up our status dictionary and our logger.

from npsolve.solvers import FINAL, STOP
status = npsolve.get_status('demos_status')
logger = npsolve.get_logger('demos_logger')

We’ll use the FINAL and STOP flags with the status dictionary.

Now let’s modify the stop method of the Pendulum class so it looks like this:

class Pendulum2(Pendulum):
 def step(self, state_dct, t, *args):
 ''' Called by the solver at each time step
 Calculate acceleration based on the
 '''
 F_pivot = self.F_pivot(t)
 F_gravity = self.F_gravity()
 F_net = F_pivot + F_gravity
 acceleration = F_net / self.mass
 if status[FINAL]:
 logger['F_pivot'].append(F_pivot)
 logger['acceleration'].append(acceleration)
 if F_pivot[1] > 90.0:
 status[STOP] = True
 derivatives = {'p_pos': state_dct['p_vel'],
 'p_vel': acceleration}
 return derivatives

We’ve added some logging under if status[FINAL]: and raised a stop flag
under if F_pivot[1] > 90.0:.

We’ll use the Integrator class to solve this, since it knows how to use
those flags. We’ll write a new run method to use it.

def run(partials, t_end=20.0, n=100001):
 solver = npsolve.solvers.Integrator(status=status,
 logger=logger,
 framerate=n//t_end)
 solver.connect(partials)
 return solver.run(t_end)

Now some plotting functions:

def plot_F_pivot(dct):
 plt.figure()
 plt.plot(dct['time'], dct['F_pivot'][:,0], label='F_pivot_x')
 plt.plot(dct['time'], dct['F_pivot'][:,1], label='F_pivot_y')
 plt.xlabel('time')
 plt.ylabel('x')
 plt.legend(loc=3)

def plot_acc(dct):
 plt.figure()
 plt.plot(dct['time'], dct['p_vel'][:,0], label='x_velocity')
 plt.plot(dct['time'], dct['acceleration'][:,0], label='x_acceleration')
 plt.xlabel('time')
 plt.ylabel('x')
 plt.legend(loc=3)

Finally, we’ll execute the new code:

def execute(freq):
 partials = [Slider(freq=freq), Pendulum2()]
 dct = run(partials, t_end=20.0, n=10001)
 plot_F_pivot(dct)
 plot_acc(dct)

execute(freq=0.5)

[image: _images/tutorial_6_acc.png]
[image: _images/tutorial_6_force.png]
It’s as easy as that. Notice first that the integrator has stopped early
because the Pendulum2 instance raised a status[STOP] = True flag.

Our logged outputs are now in the output dictionary along with our state
variables, which makes it easy to work with them. The logging
is controlled by the Partial instances, and we don’t have to change anything
else in our code. As a bonus, the Pendulum2 class will still work as normal
with the original solver in Tutorial 2 - the logging and stopping just won’t
work with it because that solver doesn’t use them.

	Note:

	Be sure that logged variables are logged only once per time step, since
otherwise the outputs won’t match up right. In tricky situations, you can
use the @npsolve.mono_cached() decorator to do that, since it will
only execute the code inside the function once per time step.

Package documentation

	npsolve package
	Module contents

	npsolve.core module

	npsolve.cache module

	npsolve.soft_functions module

	npsolve.solvers module

	npsolve.utils module

npsolve package

Module contents

Created on Mon Aug 5 20:46:26 2019

@author: Reuben

npsolve.core module

Created on Mon Aug 5 14:34:54 2019

@author: Reuben

Npsolve has a simple, small core built on fastwire. It’s designed to give
good flexibility without compromising on performance.

	
class npsolve.core.Partial

	Bases: object

A base class responsible for a set of variables

Note

__init__ method must be called.

	
add_var(name, init, safe=True, live=True, **kwargs)

	Add a new variable

	Parameters

	
	name (str) – The variable name

	init (array-like) – The initial value(s). Can be a scalar or 1D
ndarray.

	**kwargs – Optional kew word attributes for the variable.

	
add_vars(dct)

	Add multiple variables

	Parameters

	dct (dict) – A dictionary in which keys are variable names and
values are dictionaries with name, initial value, etc.

	
cache_clear()

	Clear the cache for all cached methods

	
clear_vars()

	

	
connect(cid=None)

	Connect this instance to the Solver instance

	Parameters

	
	cid (int) – The container id provided the setup_signals method

	the Solver instance. (of) –

	
enable_caching()

	Enable or

	
get_init(name)

	Get the initial value for a variable

	Parameters

	name (str) – The variable name

	
set_init(name, init)

	Set the initial value for a variable

	Parameters

	
	name (str) – The variable name

	init (array-like) – The initial value(s). Can be a scalar or 1D
ndarray.

	
set_meta(name, **kwargs)

	Set meta information for a variable

	Parameters

	**kwargs – Key word attributes for the variable.

	
set_vectors(state_dct, ret_dct)

	Override to set up views of the state vector

	Parameters

	
	state_dct (dict) – A dictionary of numpy array views for the state

	all variables. Provided by the Solver. (of) –

	ret_dct (dict) – A similar dictionary of return values. Not

	used. (usually) –

	
step(state_dct, *args)

	

	
class npsolve.core.Solver

	Bases: object

The solver that pulls together the partials and allows solving

	
as_dct(sol)

	Split out solution array into dictionary of values

	Parameters

	sol (ndarray) – A 1D or 2D array where columns correspond to state
values

This convenience method splits out a 2D array into a dictionary of
vectors or arrays, with variables as keys.

	
close_signals()

	Deactive the signal container

Note

If autoconnecting is enabled, other Partials may connect to
the Solver if the container is active.

	
connect(partials)

	Connect a dict or list of partials to the Solver instance

	Parameters

	partials (list, dict, Partial) – A list or dictionary of Partial
instances.

	
fetch_partials()

	Fetch a dictionary of all connected Partial instances

	
freeze()

	Give static copies of vectors to connected Partial instances

Warning

This will prevent the ‘step’ methods from being able to update
the values.

	
get_state_dct(squeeze=True, unitise=True)

	

	
npsolve_finish()

	Tidy up after a round of solving

	
npsolve_init(pinned=None)

	Initialise the Partials and be ready to solve

	Parameters

	pinned (dict) – A dictionary of variable-value pairs to hold
constant during stepping.

	
one_way_step(vec, *args, **kwargs)

	The method to be called every iteration with no return val

	Parameters

	
	vec (ndarray) – The state vector (passed in by the solver)

	args – Optional arguments passed to step method in each Partial.

	kwargs – Optional keyword arguments for each step method call.

	Returns

	None

	Note: This method relies on other methods being used to inform the

	solver during its iteration.

	
pinned(dct)

	A context manager that unpins all variables on exit

	
remove_signals()

	Remove the signal container

Note

This helps to keep the signal box tidy.

	
setup_signals()

	Setup the fastwire signals that Partial instances will require

	Returns

	The container id for the signals.

	Return type

	int

	
step(vec, *args, **kwargs)

	The method to be called every iteration by the numerical solver

	Parameters

	
	vec (ndarray) – The state vector (passed in by the solver)

	args – Optional arguments passed to step method in each Partial.

	kwargs – Optional keyword arguments for each step method call.

	Returns

	
	A dictionary containing keys for each variable. The values

	must match the shape of the state. These will often contain
derivatives for integration problems and error or cost values
for optimisation problems.

	Return type

	dict

	
tstep(t, vec, *args, **kwargs)

	The method to be called every iteration by the numerical solver

	Parameters

	
	vec (ndarray) – The state vector (passed in by the solver)

	args – Optional arguments passed to step method in each Partial.

	kwargs – Optional keyword arguments for each step method call.

	Returns

	
	A dictionary containing keys for each variable. The values

	must match the shape of the state. These will often contain
derivatives for integration problems and error or cost values
for optimisation problems.

	Return type

	dict

Note

This method is similar ot the step() method, but is used
where a time value is passed as the first argument.

	
unfreeze(state=None)

	Give ‘live’ vectors to connected Partial instances

	Parameters

	state (ndarray) – An optional vector to initialise the state.

npsolve.cache module

Created on Wed Aug 7 07:06:54 2019

@author: Reuben

Simple caching inspired by functools.lru_cache.

Sometimes, Partial instances may need to call each other (via a fastwire fetch
is a good method). Caching allows a way to reuse the computations for each step
if needed, to avoid having to double-up in those cases.

	
npsolve.cache.mono_cached()

	A cache method that only considers the ‘self’ argument

This works very similar to multi-cache but doesn’t use the make_key
function from functools to save a little bit of time.

	
npsolve.cache.multi_cached()

	A cache method that considers arguments

npsolve.soft_functions module

Created on Fri May 15 16:17:04 2020

@author: Reuben

These functions can be used to prevent discontinuities, which can cause
trouble for numerical methods.

	
npsolve.soft_functions.above(x, limit=0.0, scale=0.0001)

	A smooth step from 0 below a limit to 1 above it

	Parameters

	
	x (int, float, ndarray) – The value(s)

	limit (float) – [OPTIONAL] The value to step at. Defaults to 0.

	scale (float) – [OPTIONAL] A scale factor for the softening

	Returns

	Value(s) between 0 and 1

	Return type

	float, ndarray

See also

soft_step

	
npsolve.soft_functions.below(x, limit=0.0, scale=0.0001)

	A smooth step from 1 below a limit to 0 above it

	Parameters

	
	x (int, float, ndarray) – The value(s)

	limit (float) – [OPTIONAL] The value to step at. Defaults to 0.

	scale (float) – [OPTIONAL] A scale factor for the softening

	Returns

	Value(s) between 0 and 1

	Return type

	float, ndarray

See also

soft_step

	
npsolve.soft_functions.ceil(x, limit=0.0, scale=0.0001)

	Limit value to a maximum softly to to prevent discontinuous gradient

	Parameters

	
	x (int, float, ndarray) – The value(s) to soft limit

	limit (float) – [OPTIONAL] The value to limit at. Defaults to 0.

	scale (float) – [OPTIONAL] A scale factor for the softening

	Returns

	The limited value(s)

	Return type

	float, ndarray

See also

soft_limit

	
npsolve.soft_functions.clip(x, lower, upper, scale=0.0001)

	Limit value to a range softly to to prevent discontinuous gradient

	Parameters

	
	x (int, float, ndarray) – The value(s) to soft limit

	lower (float) – The lower threshold

	upper (float) – The upper threshold

	scale – A scale factor for the softening

	Returns

	The limited value(s)

	Return type

	float, ndarray

See also

soft_limit

	
npsolve.soft_functions.floor(x, limit=0.0, scale=0.0001)

	Limit value to a minimum softly to to prevent discontinuous gradient

	Parameters

	
	x (int, float, ndarray) – The value(s) to soft limit

	limit (float) – [OPTIONAL] The value to limit at. Defaults to 0.

	scale (float) – [OPTIONAL] A scale factor for the softening

	Returns

	The limited value(s)

	Return type

	float, ndarray

See also

soft_limit

	
npsolve.soft_functions.gaussian(x, center=0.0, scale=0.0001)

	A gaussian function, with a peak of 1.0

	Parameters

	
	x (int, float, ndarray) – The value(s)

	center (float) – [OPTIONAL] The x-position of the peak center

	scale (float) – [OPTIONAL] A scale factor for the curve.

	
npsolve.soft_functions.lim(x, limit=0.0, side=1, scale=0.0001)

	Limit the value softly to prevent discontinuous gradient

	Parameters

	
	x (int, float, ndarray) – The value(s) to soft limit

	limit (float) – [OPTIONAL] The value to limit at. Defaults to 0.

	side (int) – [OPTIONAL] 1 for min, -1 for max. Defaults to 1.

	scale (float) – [OPTIONAL] A scale factor for the softening

	Returns

	The limited value(s)

	Return type

	float, ndarray

Note

This function uses a softplus function to perform smoothing.
See https://en.wikipedia.org/wiki/Activation_function. Values for the
calculation are clipped to 700 avoid overflow errors, as the max
value for a float is exp(709.782).

	
npsolve.soft_functions.negdiff(x, limit=0.0, scale=0.0001)

	Negative-only difference (difference below limit to 0 above limit)

	Parameters

	
	x (int, float, ndarray) – The value(s) to soft limit

	limit (float) – [OPTIONAL] The value to limit at. Defaults to 0.

	scale (float) – [OPTIONAL] A scale factor for the softening

	Returns

	The limited value(s)

	Return type

	float, ndarray

See also

soft_limit

	
npsolve.soft_functions.outside(x, lower, upper, scale=0.0001)

	Steps smoothly from 1 outside a range to 0 inside it

	Parameters

	
	x (int, float, ndarray) – The value(s)

	lower (float) – The lower threshold

	upper (float) – The upper threshold

	scale (float) – [OPTIONAL] A scale factor for the softening

	Returns

	Value(s) between 0 and 1

	Return type

	float, ndarray

See also

soft_step

	
npsolve.soft_functions.posdiff(x, limit=0.0, scale=0.0001)

	Positive-only difference (0 below limit to difference above limit)

	Parameters

	
	x (int, float, ndarray) – The value(s) to soft limit

	limit (float) – [OPTIONAL] The value to limit at. Defaults to 0.

	scale (float) – [OPTIONAL] A scale factor for the softening

	Returns

	The limited value(s)

	Return type

	float, ndarray

See also

soft_limit

	
npsolve.soft_functions.sign(x, scale=0.0001)

	A smooth step from -1 below 0 to +1 above it

	Parameters

	
	x (int, float, ndarray) – The value(s)

	scale (float) – [OPTIONAL] A scale factor for the softening

	Returns

	Value(s) between 0 and 1

	Return type

	float, ndarray

Note

This function uses a sigmoid function to perform smoothing. See
https://en.wikipedia.org/wiki/Sigmoid_function. Values for the
calculation are clipped to avoid overflow errors.

	
npsolve.soft_functions.step(x, limit=0.0, side=1, scale=0.0001)

	A smooth step to prevent discontinuous gradient

	Parameters

	
	x (int, float, ndarray) – The value(s)

	limit (float) – [OPTIONAL] The value to step at. Defaults to 0.

	side (int) – [OPTIONAL] 1 for min, -1 for max. Defaults to 1.

	scale (float) – [OPTIONAL] A scale factor for the softening

	Returns

	Value(s) between 0 and 1

	Return type

	float, ndarray

Note

This function uses a sigmoid function to perform smoothing. See
https://en.wikipedia.org/wiki/Sigmoid_function. Values for the
calculation are clipped to avoid overflow errors.

	
npsolve.soft_functions.within(x, lower, upper, scale=0.0001)

	Steps smoothly from 0 outside a range to 1 inside it

	Parameters

	
	x (int, float, ndarray) – The value(s)

	lower (float) – The lower threshold

	upper (float) – The upper threshold

	scale (float) – [OPTIONAL] A scale factor for the softening

	Returns

	Value(s) between 0 and 1

	Return type

	float, ndarray

See also

soft_step

npsolve.solvers module

Created on Fri May 22 10:36:19 2020

@author: Reuben

This module contains more specialised solvers based on scipy.

	
class npsolve.solvers.Integrator(status, logger, framerate=60.0, interface_cls=None, integrator_name='lsoda', squeeze=True, x_name='time', update_inits=False, **kwargs)

	Bases: npsolve.core.Solver

A versatile integrator, with extra logging and stop flag

This integrator allows variables to be logged during the integration,
which are then included in the output. In addition, Partial instances
can set a flag to stop the integration at any point.

	Parameters

	
	status (defaultdict) – A dictionary that contains status flags. Key
flags are npsolve.solvers.FINAL and npsolve.solvers.STOP (which are
strings). The default should be a function that returns None.
Obtain one by calling npsolve.get_status(<name>).

	logger (defaultdict) – A dictionary in which the
default values are lists. Obtain one by calling
npsolve.get_solver(<name>).

	framerate (float) – [OPTIONAL] The number of return values per unit x
(which is often time). Defaults to 60.0.

	interface_cls (class) – [OPTIONAL] The class of interface to use for
integrator algorithms. Defaults to scipy.intergrate.ode if
scipy is found.

	integrator_name (str) – [OPTIONAL] The name of the integrator to use.
Defaults to ‘lsoda’.

	squeeze (bool) – [OPTIONAL] Ensure output arrays are squeezed. Defaults
to True.

	x_name (str) – [OPTIONAL]: The name for the x value, which is logged
in the outputs. Defaults to ‘time’.

	update_inits (bool) – [OPTIONAL] Update the initial values of the
Partial instances with the solution at the end. Defaults to False.

	keyword arguments (Other) – [OPTIONAL] Are passed to the integrator by
the call interface_cls.set_integrator(integrator_name, **kwargs).

	Returns

	A dictionary of integrated values. The values are ndarrays, which
are at the framerate specified by the ‘framerate’ argument.

	Return type

	dict

	Adding logged variables:

	Only log variables when the solver has finalised the current frame.
Integrators like scipy’s ode ‘lsoda’ use variable time steps, and take
numerous guesses at the state as they jump around in time. Once it has
reached an accurate state for the x value at the end of the frame,
status[npsolve.solvers.FINAL] is set to True. Only log values when this
flat is True. An example:

if status[FINAL]:
 logger['variable_name_1'] = current_value

	Stopping the integration:

	Stop the integration by setting status[npsolve.solvers.STOP] to True.

	
run(end, **kwargs)

	Run the solver

	Parameters

	end (float) – The end point for the integration. Integration starts
from 0 and will end at this value. Often this is a time.

	Returns

	A dictionary where keys are the variable names and
other logged names, and the values are ndarrays of the values
through time.

	Return type

	dict

npsolve.utils module

Created on Sat Sep 14 08:31:52 2019

@author: Reuben

This module contains helper functions and methods that help you get the most
from npsolve.

	
class npsolve.utils.Dict_Container

	Bases: dict

	
class npsolve.utils.List_Container

	Bases: dict

	
class npsolve.utils.List_Container_Container

	Bases: dict

	
class npsolve.utils.Set_Container

	Bases: dict

	
class npsolve.utils.Timeseries(xs, ys)

	Bases: object

A utility class to specify values from time-series data

	Parameters

	
	xs (ndarray) – A 1D array of x values. Must be monotonically increasing.

	ys (ndarray) – A 1D array of y values

	Usage:

	The Timeseries class is callable. It interpolates values smoothly
between the inputs using splines. It offers the 1st integral
to the 3rd derivative of values.

timeseries = Timeseries(xs, ys) # Create
timeseries(5) # Value at x=5
timeseries(5, -1) # 1st integral (antiderivative) at x=5
timeseries(5, 0) # Value at x=5
timeseries(5, 1) # 1st derivative at x=5
timeseries(5, 2) # 2nd derivative at x=5
timeseries(5, 3) # 3rd derivative at x=5

Note

Use Timeseries.from_csv to generate values from a csv file.

	
classmethod from_csv(fname, x_col=0, y_col=1, skip_header=0, delimiter=', ', **kwargs)

	Create a Timeseries from csv data

	Parameters

	
	fname (str) – The filename

	x_col (int) – The column index of the x data (0 is the first column)

	y_col (int) – The column index of the y data

	skip_header (int) – [Optional] Number of header rows to skip.
Defaults to 0.

	delimiter (str) – [Optional] Delimiter. Defaults to ‘,’.

	**kwargs – [Optional] Other keyword arguments passed to
numpy.genfromtxt.

	
get(x, der=0, ext=3)

	Get an interpolated value

	Parameters

	
	x (float, ndarray) – The x value(s).

	der (int) – [Optional] The derivative number. Defaults to 0.

	ext (int) – [Optional] What to do outside the range of xs. See
scipy.interpolate.splev for details. Defaults to 3, which means
to return the boundary values.

	Returns

	The y value(s)

	Return type

	ndarray

	
npsolve.utils.get_dict(name)

	

	
npsolve.utils.get_list(name)

	

	
npsolve.utils.get_list_container(name)

	

	
npsolve.utils.get_logger(name)

	

	
npsolve.utils.get_set(name)

	

	
npsolve.utils.get_status(name)

	

	
npsolve.utils.none()

	

Related packages

Here’s a list of some related packages. None provide the same functionality
as npsolve, but they might be useful for you.

	Scipy (Just use the solvers directly)

	Odespy (Class-based models possible, but it looks bit less flexible.)

	Pymunk (2D rigid body motion)

	PyDy (Based on symbolic equations)

	Hamilton (not much documentation?)

	Arboris (robotics)

	Sympy mechanics (a great package, and somewhat object-oriented, but since it
is symbolic, it will struggle with discontinuities.)

	PyODE (possibly dead?)

	Odelab (Class-based to some degree, but it looks less flexible.)

	Pyndamics (ODE wrapper)

	ARS (Robotics)

 Python Module Index

 n

 		 	

 		
 n	

 	[image: -]
 	
 npsolve	

 	
 	
 npsolve.cache	

 	
 	
 npsolve.core	

 	
 	
 npsolve.soft_functions	

 	
 	
 npsolve.solvers	

 	
 	
 npsolve.utils	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W

A

 	
 	above() (in module npsolve.soft_functions)

 	add_var() (npsolve.core.Partial method)

 	
 	add_vars() (npsolve.core.Partial method)

 	as_dct() (npsolve.core.Solver method)

B

 	
 	below() (in module npsolve.soft_functions)

C

 	
 	cache_clear() (npsolve.core.Partial method)

 	ceil() (in module npsolve.soft_functions)

 	clear_vars() (npsolve.core.Partial method)

 	
 	clip() (in module npsolve.soft_functions)

 	close_signals() (npsolve.core.Solver method)

 	connect() (npsolve.core.Partial method)

 	(npsolve.core.Solver method)

D

 	
 	Dict_Container (class in npsolve.utils)

E

 	
 	enable_caching() (npsolve.core.Partial method)

F

 	
 	fetch_partials() (npsolve.core.Solver method)

 	floor() (in module npsolve.soft_functions)

 	
 	freeze() (npsolve.core.Solver method)

 	from_csv() (npsolve.utils.Timeseries class method)

G

 	
 	gaussian() (in module npsolve.soft_functions)

 	get() (npsolve.utils.Timeseries method)

 	get_dict() (in module npsolve.utils)

 	get_init() (npsolve.core.Partial method)

 	get_list() (in module npsolve.utils)

 	
 	get_list_container() (in module npsolve.utils)

 	get_logger() (in module npsolve.utils)

 	get_set() (in module npsolve.utils)

 	get_state_dct() (npsolve.core.Solver method)

 	get_status() (in module npsolve.utils)

I

 	
 	Integrator (class in npsolve.solvers)

L

 	
 	lim() (in module npsolve.soft_functions)

 	
 	List_Container (class in npsolve.utils)

 	List_Container_Container (class in npsolve.utils)

M

 	
 	mono_cached() (in module npsolve.cache)

 	
 	multi_cached() (in module npsolve.cache)

N

 	
 	negdiff() (in module npsolve.soft_functions)

 	none() (in module npsolve.utils)

 	npsolve (module)

 	npsolve.cache (module)

 	npsolve.core (module)

 	
 	npsolve.soft_functions (module)

 	npsolve.solvers (module)

 	npsolve.utils (module)

 	npsolve_finish() (npsolve.core.Solver method)

 	npsolve_init() (npsolve.core.Solver method)

O

 	
 	one_way_step() (npsolve.core.Solver method)

 	
 	outside() (in module npsolve.soft_functions)

P

 	
 	Partial (class in npsolve.core)

 	
 	pinned() (npsolve.core.Solver method)

 	posdiff() (in module npsolve.soft_functions)

R

 	
 	remove_signals() (npsolve.core.Solver method)

 	
 	run() (npsolve.solvers.Integrator method)

S

 	
 	Set_Container (class in npsolve.utils)

 	set_init() (npsolve.core.Partial method)

 	set_meta() (npsolve.core.Partial method)

 	set_vectors() (npsolve.core.Partial method)

 	setup_signals() (npsolve.core.Solver method)

 	
 	sign() (in module npsolve.soft_functions)

 	Solver (class in npsolve.core)

 	step() (in module npsolve.soft_functions)

 	(npsolve.core.Partial method)

 	(npsolve.core.Solver method)

T

 	
 	Timeseries (class in npsolve.utils)

 	
 	tstep() (npsolve.core.Solver method)

U

 	
 	unfreeze() (npsolve.core.Solver method)

W

 	
 	within() (in module npsolve.soft_functions)

 _images/tutorial_1.png
—— position

— velocity
1] — force
o

_images/tutorial_2a.png
10

12

14

_images/tutorial_2b.png
15125

15100

15075

15050

15025

1.5000

14975

1.4950

6.21

6.22

6.23

6.24

6.25

nav.xhtml

 Table of Contents

 		
 Welcome to npsolve’s documentation!

 		
 Tutorials

 		
 Tutorial 1 - Basics

 		
 Tutorial 2 - Handling discontinuities

 		
 Tutorial 3 - Timeseries input

 		
 Tutorial 4 - Sharing values between objects

 		
 Tutorial 5 - Using polymorphism

 		
 Tutorial 6 - Logging variables and stopping

 		
 Package documentation

 		
 npsolve package

 		
 Module contents

 		
 npsolve.core module

 		
 npsolve.cache module

 		
 npsolve.soft_functions module

 		
 npsolve.solvers module

 		
 npsolve.utils module

 		
 Related packages

_images/tutorial_4_0p5Hz_trajectories.png
— slider
101 — pendulum
0.5
0.0

-0.5

-1.0

-15 -1.0

05

15

_images/tutorial_4_0p5Hz_xs.png
150

125

1.00

075

050

025

0.00

-0.25

-0.50

— slider
—— pendulum

0 2

time

10

_images/tutorial_3a.png

_images/tutorial_3b.png

_images/tutorial_4_2Hz_trajectories.png
— slider
101 — pendulum

0.5

0.0 —
-0.5
“10 -

-15 -1.0 -05 0.0 05

10

15

_images/tutorial_4_2Hz_xs.png
015

0.10

0.05

0.00

~0.05

— slider
—— pendulum

0 2

time

10

_images/tutorial_4_1Hz_trajectories.png
— slider
101 — pendulum
0.5
0.0

-0.5

-1.0

-15 -1.0

05

10

15

_images/tutorial_4_1Hz_xs.png
0.6

0.4

02

0.0

— slider
—— pendulum

0 2

time

10

_images/tutorial_5_trajectories.png
12

10

—— particle
—— pendulum

_images/tutorial_5_trajectories_2.png
12

10

—— particle
—— pendulum

10

12

_images/tutorial_6_acc.png
20

10

— x_velocity
—30{ — x_acceleration

0 2

time

10

_static/comment-bright.png

_images/tutorial_6_force.png
120

100

80

60

— F_pivot x
— F_pivoty

0 2

time

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/plus.png

